Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Theory of Computation

Subject Code: 4TE06TOC1			Branch: B.Tech (CE)		
Semester: 6		Date: 26/09/2022	Time: 11:00 To 02:00	Marks: 70	
Instruct (1) (2) (3) (4)	ions: Use o Instru Draw Assu	of Programmable calculator & any othe actions written on main answer book neat diagrams and figures (if necess me suitable data if needed.	ner electronic instrument is pro are strictly to be obeyed. ary) at right places.	bhibited.	
Q-1	 a) b) c) d) e) f) g) h) i) 	Attempt the following questions: Define: DFA Define: Regular Language Define: Reflexive Relation Define: Parse Tree Define: Ambiguous Grammar Define: Context Free Grammar List out any two applications of The Regular Expression $a + b$ denotes th (A) { ϵ , a , b } (B) { a , b } What is the main difference betweer (A) In DFA, null transitions maybe (B) In NFA, null transitions maybe (C) In DFA, from any given state th two different states (D) In NFA, from any given state th	ory of Computation. e set of (C) {a} (D) None of the DFA and NFA? present present here can't be any alphabet lead	(14) these ing to ing to	
	j)	two different states Let n be the positive integer constant alphabet {a}. To recognize L, the matching DFA will be	t and L be the language with inimum number of states requi	red in	
	k)	(A) if (B) ii -1 Which of the following is true for Θ (A) $f(x) \ge C(g(x))$ whenever $x \ge k$ (C) $C2(g(x)) \le f(x) \le C1(g(x))$	(C) II+1 (D) $2n+1$ notation? (B) $f(x) \le C(g(x))$ wheneves (D) None of these	r x≥k	
	I)	RR* can be expressed in which of the (A) R_{+} (B) R_{-} (C)	the form? (D) \mathbf{R} (D) \mathbf{R}		
	m)	A pushdown automata can be define What does the symbol z0 represents (A) an element of G (C) top stack alphabet	d as: $(Q, \sum, G, q0, z0, A, d)$ (B) initial stack symbol (D) None of these		
	n)	I ne production of the form $A \rightarrow B$, v	vnere A and B are non-termina	als 1s	

called	
(A) Null production	(B) Unit production
(C) Greibach Normal Form	(B) Chomsky Normal Form

Attempt any four questions from Q-2 to Q-8

(b) Construct Null NFA equivalent to the given regular expression using (06) Construction Method:

(b)

(a)
$$R = (ab+a)*(aa+b)$$

(b)
$$R = (0+1)^* (00+11) (0+1)^*$$

(a)

(a) Convert the following NFA into DFA

- (b) Write down regular expressions for the following conditions for $\Sigma = \{a, b, c\}$ (06)
 - (i) third character from right end of the string is always a.
 - (ii) any number of a followed by any number of b followed by any number of c.
 - (iii) all strings that contains at least two b's.

Q-5 Attempt all questions

(a) Consider following grammar:

 $S \rightarrow A1B$

(14)

(07)

(14)

(08)

		$A \rightarrow 0A \mid \epsilon$	
		$B \rightarrow 0B \mid 1B \mid \epsilon$	
		Give leftmost and rightmost derivations of the string 00101. Also draw	
		the parse tree (step by step) for both derivations corresponding to this	
		string.	
	(b)	Convert the following CFG into CNF	(07)
		$S \rightarrow ASA \mid aB$	
		$A \rightarrow B \mid S$	
		$B \rightarrow b \mid \epsilon$	
Q-6		Attempt all questions	(14)
-	(a)	State and Prove Arden's Theorem.	(07)
	(b)	State and Prove Cook's Theorem.	(07)
Q-7	. ,	Attempt all questions	(14)
C	(a)	Prove that a language $L = \{ 0^i 1^i i \ge 0 \}$ is not regular.	(07)
	(b)	Explain the concept of P, NP, NP – Complete and NP – Hard problems	(07)
	. ,	with suitable examples.	
Q-8		Attempt all questions	(14)
C	(a)	Write a note on Universal Turing Machine and Halting Problem.	(07)
	(b)	Explain Unbounded Minimization and µ-Recursive Functions.	(07)

